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2) The observer is at the same distance, but at an angle
¢ =30 deg from the rotor plane, (x, y, 2)=(—480, 0, 240).

The agreement between theoretical and Kirchhoff solutions
is very good for both cases with error less than 1% for peak
values. The discrepancy at the beginning is due to the sudden
jump at the solution there. Case 2 has a lower signal, as ex-
pected, since the thickness noise is maximum at the rotor
plane.

This simple example shows the viability of the method for
three-dimensional helicopter noise calculations. The Kirchhoff
method is not limited to the sonic cylinder, and the observer
can be out of the rotor plane. Solutions can also be obtained
for a moving rotor. This powerful method can be utilized for
the development of a set of simple portable Kirchhoff subrou-
tines for the calculation of the far-field noise using the input
given from any aerodynamic near/midfield code.
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Introduction

HE Falkner-Skan equation is a celebrated equation in
fluid mechanics. Its solutions are well known as similar
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solutions. The study of the similar solutions in the past has
contributed greatly to our understanding of the mechanism
which governs the process of heat, mass, and momentum
transfer through laminar boundary layers. It is of interest to
note that the similar solutions are also required in several
series solutions of partial differential equations, where they
usually appear as the first term. Similar solutions are impor-
tant because they also serve as the foundation for a number of
more general methods for boundary-layer analysis used for
estimating transfer rates for both similar and nonsimilar
boundary layers. Because of the theoretical and practical im-
portance of the Falkner-Skan equation as stated above and
because no closed-form solution is known, a number of nu-
merical solutions for many discrete values of 8 have been
tabulated and many scientists have worked on it, such as
Cebeci and Keller,! Smith,? and Evans,? among others. How-
ever, all of their solutions are in discrete form. Recently, Aziz
and Na* described a new approach for this problem. They
explored a regular perturbation expansion for f as a power
series in 3 for this problem. Compared to the previous meth-
ods, the power-series method is similar both in conception and
computation. But the resulting series is found to converge only
for very small values of 8. To improve the range of applicabil-
ity and accuracy, the Shanks transformation is applied repeat-
edly. This process is not only inconvenient but also inaccurate.
Under the motivation of this approach and the research of
Van Dyke,>® we derive a new series expansion method for this
problem. Four series for f”(0) and four series for 6, originat-
ing at B¢ = 2, 1, 0.3, 0, respectively, have been worked out. To
overcome the difficulty near separation, a common term is
constructed and used to estimate the remainder of the series
originating at 8o = 0. The surprising agreement of the results
with the well-known numerical solutions shows the high accu-
racy of the present method.

Mathematical Model

The celebrated Falkner-Skan equation in fluid mechanics is
of the form

ST +BA =) =0 M
with boundary conditions
JO=r®=0, [f'(ox)=1 )

Substituting ¢ = 8y — # into Eq. (1), we have

£ AL Bl =) = 10— £ ®

Assuming
f= L, @

we have
§ +fof§ +Boll — f) =0 ®)
HO=FO=0, fi@) =1 ©
I3 oSt oSl + 15 5y~ PEEYE

ST N ™
HO=Fi0=0, fi(e)=0 ®

where n =1, 2, 3, . . . and §;, is the well-known Kronecker
delta.

The skin-friction factor is

£ = Lrion = T aur ©
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The displacement-thickness factor is

5 = g:(l ~f') dn = lim [n— ifnt"} = Lbar (10)
n=0 n=0

n—o

The momentum-thickness factor is related to 6, and f“ (0) in
the form

S7(0) =851 + (1 + B)5, )

Series Solution

For four given values of 3, (i.e., the origin of the series
expansion), the numerical solutions of Eqs. (5-8) and Eq. (10)
give us the corresponding a, and b, as shown in Tables 1 and
2, together with the range of application.

It is found that

@ 2 ]
v o= [ Z}Oant"} = gocnt” (12)

[y 2 [
Dl2 = |:alsep - E bnt":| = E dnt" (13)
n=0 n=0

£1(0) , L{" OO

[£¢0)1"
2 F
£7(0)
1k
0 i 1 i
Baep © 1 2
g
Fig. 1 [f”(0))? is closer to a siraight line.
Table 1 Coefficients of Eq. (9)

an Bo=2 Bo=1 Bo=0.3 Bo=0
ao 1.68721817 1.23258767 0.77475458 0.46959999
ay —0.39412582-0.53671450 —0.83450727  —1.2989291
a —0.04560122 —0.11383635 —0.41410405  —1.5220060
@ —0.01046873 —0.04743228 —0.39918958 —3.5619998
ay —0.00298461 —0.02442445 —0.47868911  —10.666717
as —0.00094807 —0.01399464 —0.64602689  —36.434664
as ~0.00032138 —0.00856527 —0.94104246 —134.81195
a; —-0.00011379 —0.00548803 —1.4459841 —525.87926
ag —0.00004158 —0.00363890 —2.3103660 —2129.2511
ag —_ —0.00247847 —3.8019753  —8862.9806
ap — —0.00172512 —6.4014576  —37688.211

Range 2.7<@<1.3 1.5<B8<0.5 0.5<B8<0.1 0.1<B<~-0.1
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(D = b15ep — 6 = 2.35884570 — §,). This is somewhat better
from the viewpoint of convergency. Also,

_ 2
Co=4ay, C

2a0 a1, €= af +2apas, . . . (14)

dy=bg?% d

i

~2bob, dy=bI—2boh,, ... (15)

(o = B15ep — bo). The reason for this occurrence is that the
function [f” (0)]* or D? with respect to § is closer to a straight
line (see Fig. 1).

The corresponding ¢, and d,, in Eqgs. (12) and (13) are shown
in Tables 3 and 4 together with the range of application. In the
case of 8y = 0, the corresponding series cannot cover the whole
range of B near separation. To overcome this difficulty, we
introduce the common-term construction method presented in
the first author’s previous paper.” From the numerical solu-
tion, we found that separation occurs at fg,=

Table 2 Coefficients of Eq. (10)

b Bo=2 Bo=1 Bo=0.3 Bo=0

bo 0.4974337 0.6479005 0.9109938 1.217806
b 0.1018692 0.2265274 0.6479480 1.675580
b 0.0314322 0.1203543 0.7264755 4.004006
b3 0.0108246 0.0719647 0.9465300 11.88956
ba 0.0039317 0.0457411 1.345097 40.07173
bs 0.0014753 0.0302509 2.027941 146.4553
bs 0.0005663 0.0205946 3.191907 565.5123
b7 0.0002211 0.0143403 5.189857 2270.955
bg 0.0000875 0.0101688 8.653623 9389.892
by — 0.0073203 14.72015 35710.43
bio _— 0.0053370 25.44753 170972.8

Range 2.8<f<1.2 1.6<B<0.5 0.55<B8<0.05 0.1<pf<-0.1

Table 3 Coefficients of Eq. (12)

Cn Bo=2 Bo=1 B0=0.3 Bo=0

Co 2.84670515 1.51927233 0.60024466 0.22052415
Cy —1.3299525  —1.3230953 —1.2930767 —1.2199541
[ 0.00145674 0.00743590 0.05474436 0.25774872
c3 0.00061917 0.00526636 0.07259776 0.60852737
C4 0.00026011 0.00366334 0.09600222 1.5518864
cs 0.00010820 0.00251771 0.12852654 4.3339467
Cé 0.00004464 0.00171795 0.17588087 13.194151
c7 0.00001829 0.00116847 0.24726796 43.213731
(o] 0.00000746 0.00079472 0.35773195 150.07551
C9 _ 0.00054186 0.53221545 545.84017
C10 —_ 0.00037109 0.81262656 2059.3134

Range 2.8=<f=<12 1.65=<8=<0.5 0.55=8=<0.05 0.1=8=-0.1

Table 4 Coefficients of Eq. (13)

dn Bo=2 Bo=1 B0=0.3 Bo=0
doy 3.4648547 2.9273336 2.0962751 1.3043127
d; —0.3792412 —0.7751519 —1.876266 —3.827244
dz —-0.1066391 —0.3605246 —1.683821 —6.338100
a3 —0.0338940 ~0.1917283 —1.799434 —13.73923
dy —0.0114435 —0.1094318 —2.140630 —35.65317
ds —0.0040109 —0.0654695 —2.753949 —105.0244
ds —0.0014433 —0.0405780 —3.764539 —338.6521
d7 —0.0005299 -0.0258753 —5.399062 —1166.347
ds ~0.0001977 —0.0168962 —8.046830 —4420.452
dy —_— ~0.0112589 —12.37238 —15866.10
dio —_— —-0.0076351 —19.51533 —61481.17

Range 2.8=<@=<1.2 1.6=<f3=<0.5 0.55<3=<0.05 0.1<B=<—-0.1
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Table 5 Comparison of values of f”(0)

8 Smith? Aziz and Na* Present
2.0 1.687218 1.687516 1.687218
1.6 1.521514 1.521689 1.521514
1.2 1.335722 1.335793 1.335721
1.0 1.232588 1.232623 1.232588
0.8 1.120268 1.120280 1.120268
0.6 0.995836 0.995837 0.995836
0.4 0.854421 0.854418 0.854421
0.2 0.686708 0.686706 0.686708
0.1 0.587035 0.587034 0.587035
0.05 0.531130 0.531129 0.531130
0.00 0.469600 0.469600 0.469600
—0.05 0.400323 0.400322 0.400323
—0.10 0.319270 0.319266 0.319270
—-0.14 0.239736 0.239724 0.239736
—0.16 0.190780 0.190758 0.190780
—0.18 0.128636 0.128615 0.128636
—0.19 0.085700 0.085840 0.085700
-0.195 0.055172 0.056027 0.055172

Table 6 Comparison of values of 91 and 92

31 a2

8 Evans? present Evans® present
2.0 0.49743 0.49743 0.23079 0.23078
1.6 0.54402 0.54402 0.25042 0.25042
1.2 0.60689 0.60690 0.27612 0.27611
1.0 0.64790 0.64790 0.29234 0.29234
0.8 0.69868 0.69868 0.31185 0.31185
0.6 0.76397 0.76397 0.33591 0.33591
0.5 0.80455 0.80455 0.35027 0.35027
0.4 0.85264 0.85263 0.36669 0.36669
0.3 0.91099 0.91099 0.38574 0.38574
0.2 0.98416 0.98416 0.40823 0.40823
0.1 1.08032 1.08032 0.43546 0.43546
0.0 1.21677 1.21678 0.46960 0.46960
—-0.10 1.44270 1.44270 0.51504 0.51504
—0.14 —_— 1.59590 —_ 0.53856
—-0.16 —_ 1.70665 — 0.55219
—0.18 —_ 1.87157 —_ 0.56771
—-0.19 —_—— 2.00676 —_— 0.57625
—0.195 —_— 2.11704 —_— 0.58136

—0.198837735, where we have f”7(0) = 0 and 6, = 2.35884570.
The corresponding series can then be written as

[F7(0))? = (1 — £)(0.22052415 — 0.022048777 — 0.0118583072
— 0.007074467° — 0.004648667* — 0.003301637°
—0.002486227° — 0.00195520/” — 0.0015885178

— 0.001323327 — 0.001124397° + R), By, < =<0.1

(16)
D? = (1 —H(1.3043127 + 0.54331217 + 0.29272627
+ 0.1847175F + 0.1289869# + 0.096344475
+ 0.0754155 + 0.06108307 + 0.0507709¢8
+ 0.04306267° + 0.03712307'° + Ry), Bip=h=<0.1
17

where 7 = £/0.198837735 and R, and R, are the remainders of
the series.

It is found that the last few terms in Eq. (16) may be
approximated by a so-called ‘“‘common term”’

" = kit"(n + a))% (18)

TECHNICAL NOTES 1455

where constants k,, a;, and s; may be determined by three
nodal values (say, ¢;, ¢9, and ¢} to be s, = — 1.50383,
a, = —0.25172867, and k, = —0.03452676. Similarly, the
last few terms in Eq. (17) may be approximated by a common
term

d,7" = ki'(n + a2 19)

where s, = — 1.5016, a, = 0.6296443, and k, = 1.291484. The
remainder of the series can then be written as

@

Ri=k Y t'"(n +a)” (20)

n=11

R,=k, ¥ "(n + a2 1)

n=11

Within the range — 0.1<f3<2.7, the values of f”(0) and §,
may be obtained directly from the corresponding series of
Egs. (12) and (13). Although in the range 8., <8< — 0.1, the
series given by Egs. (16) and (17) must be used. As for §,, it
may be calculated easily from Eq. (11) when f”(0) and 6, are
known.

The results for 18 values of 8 within the range B, <8 <2
given in Tables 5 and 6 show surprising agreement with the
well-known numerical results of Smith? and Evans.?

Conclusions

Instead of the one-series expansion originated at 8o =0,
four series with different origins developed in this paper cover
almost the whole practical interest range of .

The series for [f”(0)]> derived in this Note is somewhat
better than the commonly used series for f”(0) from the
viewpoint of convergency, especially for small values of 8.
Similarly, the series for D{ is better than the series for §,.

The series for [f”(0)]? and D} with a factor (1 —7) derived in
this Note satisfy the conditions 7=1, f”7(0)=0, and D, =0 at
the point of separation automatically.

By means of the information provided by the known terms
(say, ¢;— ¢ or d;—d)p), the common term is constructed and
used to estimate the remainder of the series.

Four series for [f”(0)1?, four series for DZ, together with a
simple exact relation between f”(0) and 6, and §,, may be
taken as a ‘‘quasianalytical solution’’ of the Falkner-Skan
equation and thus lead the calculation to a very simple work.

Checking the accuracy of the results obtained in this Note,
we believe that the present method is a very satisfactory one.
It is accurate to six digits for f” (0) and five digits for §; and §,.

The new idea presented in this Note and outlined above may
be probably applied to any other problems of a similar nature.
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